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Abstract. A generalized model of the spread of the Hantavirus in mice populations is presented on the
basis of recent observational findings concerning the movement characteristics of the mice that carry
the infection. The factual information behind the generalization is based on mark-recapture observations
reported in Giuggioli et al. [Bull. Math. Biol. 67, 1135 (2005)] that have necessitated the introduction of
home ranges in the simple model of Hantavirus spread presented by Abramson and Kenkre [Phys. Rev.
E 66, 11912 (2002)]. The essential feature of the model presented here is the existence of adult mice that
remain largely confined to locations near their home ranges, and itinerant juvenile mice that are not so
confined, and, during their search for their own homes, move and infect both other juveniles and adults
that they meet during their movement. The model is presented at three levels of description: mean field,
kinetic and configuration. Results of calculations are shown explicitly from the mean field equations and
the simulation rules, and are found to agree in some respects and to differ in others. The origin of the
differences is shown to lie in spatial correlations. It is indicated how mark-recapture observations in the
field may be employed to verify the applicability of the theory.

PACS. 87.19.Xx Diseases – 87.23.Cc Population dynamics and ecological pattern formation

1 Background and motivation for the study

The spread of epidemics is an important topic that has
received a great deal of attention from researchers in re-
cent times [1–6]. This interest stems from multiple factors.
On the utilitarian side, concerns regarding human health
provide an obvious reason for carrying out such studies.
An equally important motivation arises purely from intel-
lectual sources: the desire to gain a general understand-
ing of spatially resolved strongly interacting systems on
a macroscopic scale. Examples of epidemics of particular
interest to the interdisciplinary scientist are the plague,
the West Nile virus, and the Hantavirus. From the many-
body aspect in (theoretical) modeling activities, the first
presents formidable problems related to the number of car-
riers and diverse interactions of the fleas and their con-
nections to their hosts. The second provides an interest-
ing example of a system with two carriers, mosquitoes
and birds, with disparate lifespans (weeks and years re-
spectively) and suggests [7] time scale disparity analyses
known in condensed matter sciences (see e.g. a discussion
of the Born-Oppenheimer approximation in solids in refer-
ence [8]). The simplest of the epidemics to study, from the

a e-mail: kenkre@unm.edu

conceptual viewpoint of a theorist, is the Hantavirus [1–6].
It is the subject of the study presented below.

The details of the Hantavirus epidemic may be found
in the review by Yates et al. [1] and related refer-
ences [2–6]. The essential feature of the epidemic from
the modeling point of view is that the infection is carried
by mice that move from one physical location to another,
and is transmitted to other mice through what are proba-
bly aggressive encounters. It is believed that the mice and
the virus have coexisted for millions of years and there-
fore the mice do not die, nor are otherwise impaired, from
contraction of the virus. This feature is peculiar to the
Hantavirus and not shared with other epidemics such as
the plague or the West Nile virus where the carriers may
die from contracting the virus. Oscillations in the popula-
tion which are characteristic of such behavior are therefore
absent in the Hantavirus. Furthermore, in the Hantavirus
context, no mice are born infected: infection may only be
contracted from other mice after birth: there is no “verti-
cal transmission” of the disease. The human population is
incidental to the evolution of infection within the mouse
population since humans get the virus from the mice but
have no feedback effects on the mice in the infection pro-
cess.
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These features of the epidemic led a few years ago to
the construction by two of the present authors of a sim-
ple model of the spread of the Hantavirus in the mouse
population. In addition to the above features particular
to the epidemic, interaction of the mice with the environ-
ment through standard logistic terms [9,10] and motion of
the mice over the terrain viewed as a simple and free ran-
dom walk were the elements that went into the making of
the model. The model was introduced at the usual three
levels of the description of a many-body system: the most
crude, the mean field level, the more detailed, the kinetic
level, and the most detailed, the configuration level. The
last was handled through simulations [11]. The first two
levels were treated in reference [3], and most active stud-
ies were carried out at the kinetic level [3] which describes
through the use of partial differential equations, the time
evolution of the average but spatially resolved mice pop-
ulations Ms (susceptible) and Mi (infected). The specific
equations, with t denoting time and x representing loca-
tion in a space of appropriate dimensions, a 2-d description
being typically sufficient, are

∂Ms

∂t
= bM − cMs − MsM

K(x, t)
− aMsMi + D∇2Ms,

∂Mi

∂t
= −cMi − MiM

K(x, t)
+ aMsMi + D∇2Mi, (1)

where M = Ms +Mi. Considerations such as those arising
from gender and age of the animals were tacitly neglected,
and all parameters except K were considered to be inde-
pendent of time.

The parameters of the model are a, b, c, K and D.
All processes are assumed to be occurring continuously
in time, an approximation which seems reasonable unless
observations or phenomena are particularly chosen to be
probed at very short time scales. The processes of birth
and death of the mice are represented as occurring at
rates b and c, respectively. The transmission of infection
occurs through encounters, the aggression parameter be-
ing a. Saturation of the population is assumed to occur
by competition for the resources among the mice through
the environmental parameter K which describes nutrition
available to the mice. This parameter, whose product with
b−c is called the ‘carrying capacity’, controls the so-called
logistic term which resolves in the standard manner the
paradox of Malthusian explosion of the population.

Let us focus on this kinetic level model and refer to
it as has been done in the current literature [11,12] as
the AK model. It may be regarded from the ecological
viewpoint merely as the familiar Susceptible-Infected (of-
ten called SI) model extended to include spatial resolution
and diffusive transport. From the mathematical point of
view it may be said to represent a system obeying the
Fisher equation [10] with internal states representing in-
fection or its absence, respectively. While near-trivial to
conceive, this model has had considerable success in the
short time since it was proposed for the Hantavirus [3]. It
has led to qualitative and semi-quantitative success in ex-
plaining observations such as spatio-temporal patterns in
the epidemics. These patterns are associated with correla-

tions between periods of precipitation and epidemic out-
breaks, and with the spatial location of refugia–regions of
the landscape in which infection persists during off-periods
of the epidemic [3,5]. Other applications of the model in-
clude the detailed understanding and control of traveling
waves of infection [4], fluctuations arising from the finite-
ness of the numbers and discreteness of the population
of the rodents [11,12], environmental effects [13], curious
switching effects that have been predicted to occur [14],
and extensions to unrelated systems such as bacteria in
Petri dishes [15,16].

The success of and interest in this so-called AK model
represented by (1) led to recent attempts to devise practi-
cal prescriptions for the extraction of the parameters con-
stituting the model from field measurements. The mouse
birth rate b and the death rate c are obtained from field
observations without too much trouble and are generally
considered to be constants in space and time. With some
effort, reasonable estimates of the environment resource
parameter K (x, t) as a function of location and time can
be obtained by counting food (such as nuts and water)
available to the mice in the different locations, as well as by
acquiring aerial photographs of the vegetation cover. Rel-
ative, rather than absolute, quantification of K is possible
in this way. Observational collection of data concerning
the aggression rate a, through which infection is thought
to be transmitted during mouse-mouse encounters, turns
out to be so difficult that, at least at the present moment,
it must be considered an adjustable parameter. It was,
however, possible to focus on the important parameter,
the mouse diffusion constant D, and to obtain it quanti-
tatively from field measurements [17–19].

The basic conceptual procedure used in that [17–19]
extraction of D consisted of regarding that the mouse
movement is a simple random walk. D could then be ob-
tained from records of the movement through the use of
the well-known proportionality of the mean square dis-
placement to Dt. The details of the theory [19] and the im-
plementation of the prescriptions obtained from the theory
to mark-recapture observations carried out in Panama [17]
and New Mexico [18] may be found in our recent work. The
important and perhaps surprising conclusion that emerged
from that work was that the mouse mean square displace-
ment, which grows linearly with t for short times, is found
to saturate at large times. The appearance of a length scale
in the random movements of the mice may be ascribed to
the fact that animals typically move near fixed locations
(burrows) for reasons of shelter and security [20–22], but
it could also be ascribed to the fact that mark-recapture
observations employ a limited region of space where the
traps are laid out. It is possible to show analytically [17]
that either of these factors could independently lead to
the saturation of the mean square displacement. A dis-
entangling of the two length scales was possible [19] and
led to explicit deductions of both the diffusion constant of
the mice and their home ranges. Thus, reasonable realis-
tic extracted values of the home range size L for different
types of mice in different environments were found to be
between 50 and 120 m for Zygodontomys brevicauda in
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Panama and about 100 ± 25 m for Peromyscus manicula-
tus in New Mexico. The respective values of the diffusion
constant D of the mice turned out to be 200 ± 50 and
470 ± 50 m squared per day.

This quantitative information has provided the im-
petus (indeed, necessity) to generalize the AK model
expressed in equation (1) to incorporate home ranges.
Kenkre has suggested [23] several different generalizations
for this purpose. One simple way of incorporating home
ranges in our model of epidemic spread is to add poten-
tial terms to equation (1). Such an analysis, carried out by
MacInnis et al. [24] has resulted in modifications in the AK
predictions for refugia sizes and shapes. Another, simpler,
model modification in the AK equations has led us [25] to
apply the so-called Montroll defect technique [26] to de-
duce memory-possessing variations of the AK equations
on the one hand and time-dependent diffusion constant
variations on the other. Perhaps the most fertile model
that has emerged from the work on the determination of
motion and demographic characteristics is the one that
we discuss in the present paper. It is set out in Section 2
below and an examination of its consequences form the
rest of the paper, Section 3 being devoted to an explicit
analysis of the model and Section 4 to concluding remarks.

2 A generalized model for the spread
of the Hantavirus

Given that finite home ranges of mice are a fact, and de-
ducible from observations as explained above, one might
consider two extremes: one in which the extent of the home
ranges is infinite, and another in which that extent is zero.
The former agrees with the AK model in which infection
spreads as a result of the unrestricted diffusive motion of
the mice. The latter extreme would lead to no spread of
infection unless other features were added to the model on
the basis of observations. Such observations have been re-
ported in the biological literature. The mouse population
is known to be composed of two classes of animals: those
confined within finite home ranges and those freely diffus-
ing in the landscape. This situation does corresponds to a
realistic scenario where the mice restricted to home ranges
are the adults and the wandering ones are the subadults
searching to find and establish their own home ranges. It
is well known in the literature (see e.g. Ref. [21]) that most
subadults do not reside in a home range. Their strength
is not sufficient to overcome the bigger and more aggres-
sive adults who claim the home ranges for themselves [27].
Subadults are thus forced to roam in the landscape until
they find an area that is free of adults where they can set-
tle into. In such a scenario infection gets transmitted due
to contacts between the subadults, between the adults and
subadults, and bewteen the neighbouring adults whose
home ranges overlap. Given the lack of experimental data
on home range overlap in mice population and especially
in order to emphasize the new features that appear as a
result of confinement, we treat in this paper the extreme
that there is no overlap of home ranges. Surely the actual
situation is intermediate between the two extremes.

We thus consider the dynamics of two types of mice,
stationary and itinerant (and susceptible and infected in
each category). The stationary mice are the adults that
move within their home ranges and do not stray far from
the burrow. We have termed them ‘localized adults’ in
the title of the present paper. The itinerant mice are the
subadults (called ‘itinerant juveniles’ in the title) that
must leave to find their own home ranges. Adults do not
move because their home ranges are considered of negli-
gible extent for the purposes of this description. They die
at the rate c and have the standard logistic competition
interactions with the environment controlled by the envi-
ronment parameter K. They may be infected or not, the
only possibility of their contracting infection being when
an infected juvenile visits their home range. If infected,
they may transmit infection to a susceptible juvenile if it
visits their home range. Adults are not born but juveniles
turn into adults. This happens when a juvenile finds an
appropriate site to settle down in, which then becomes its
burrow.

Juveniles are born at a rate b from the adult popula-
tion. They are mobile, their motion being diffusive. They
may acquire or transmit infection to other adults or other
juveniles on encounter. If they find an appropriate site
they turn into adults and become immobile as described
above. They also have environment competition rates with
the rest of the mice. In order to focus attention on special
features of our generalization, we neglect the death rate cB

of the juveniles and allow their population to be depleted
only through the competition term and their conversion to
adults through growth. In a companion paper [28] we have
included the death rate of the juveniles and indeed exam-
ined the specific effect of changes in that rate induced by
the existence of predators in the open field.

The characteristics that we have described above sug-
gest that the AK model in (1) be replaced by

∂Bi(x, t)
∂t

= −cBBi − Bi(A + B)
K(x, t)

+ aBs(Ai + Bi)

+D∇2Bi − G(x)Bi,

∂Bs(x, t)
∂t

= bA − cBBs − Bs(A + B)
K(x, t)

− aBs(Ai + Bi)

+D∇2Bs − G(x)Bs,

∂Ai(x, t)
∂t

= −cAi − Ai(A + B)
K(x, t)

+ aAsBi + G(x)Bi,

∂As(x, t)
∂t

= −cAs − As(A + B)
K(x, t)

− aAsBi + G(x)Bs,(2)

where A and B (without suffixes) denote the total densi-
ties of the adult and juvenile mice respectively, the suffixes
i and s represent infected and susceptible states as earlier,
and the last terms in each equation describe the settling
down of the juveniles into their own homes, accompanied
by their conversion into (static) adults. The rate of such
conversion is G(x). This G(x) is non-zero only if x lies in
the ‘green pastures’, that is the spatial regions that the ju-
veniles find suitable as their home ranges. Note that there
are no spatial derivatives in the equations for the adults
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because the adults do not move, that being an extreme
representation of their confinement to their home ranges.
Throughout this paper we will consider G(x) to be rep-
resented by an overall space-independent g. This is done
only for the sake of simplicity since we have a large number
of other parameters whose effects we wish to study first.
In a subsequent publication we will address the specific
effects of the spatial structure of this term.

The model represented in equation (2) describes the
processes at a kinetic level as does the AK model in
equation (1). This means that the key quantities are mice
densities and that the evolution is described via kinetic
equations such as the Fisher equation [9,10]. A less de-
tailed description, with no spatial resolution included, is
provided by a mean field model in which the key quantities
are the total mice numbers

∫
A(x, t)dx and

∫
B(x, t)dx

where the integrals are over the entire landscape. A more
detailed description than in kinetic models is provided
by configuration master equation approaches (see for ex-
ample [29,30]) which include fluctuation effects. In the
present paper we will analyze both the mean field and the
configuration master equation approaches, reserving the
middle-level kinetic treatment for a future publication.

3 Analysis: mean field and simulation
treatments

In studying many non-trivial complex spatially resolved
systems, much is gained by first carrying out a simpler
mean field analysis in which the spatial resolution is ne-
glected. While certainly unable to address the nuances
of the spatial resolution, the mean field study can often
provide a usable (although coarse) map of the dynamics.
As we will see below, this happens in the present study.
The mean field approximation yields analytic results for
the dependence of the steady state densities as function
of the various parameters of the model, results which are,
to some extent, borne out by the more detailed simula-
tion study. To take advantage of the intuition that may be
thus developed, we treat in this section the model of equa-
tion (2) first by simplifying it to the mean field level of de-
scription. We then augment it to the ‘configuration level’
description (a phrase which represents the full detail of
the dynamics) and study it via Monte Carlo simulations.
For simplicity we keep K time and space independent.

3.1 Preliminary studies: mean field description

The mean field description focuses on the time evolution
of the integrals of the densities in a kinetic description
such as that of equation (2) and thereby loses space reso-
lution. Called in some contexts the ‘well-stirred limit’, the
mean field description may be considered as the limit of
equation (2) for an infinitely large diffusion constant D. In
passing from the kinetic to the mean field description, the
single infection quantity a in equation (2) results in two
corresponding quantities: a0 and a1. The former (latter)

refers to the transfer of infection between an adult (juve-
nile) and a juvenile. Both quantities result from the combi-
nation of the infection event and the motion process. The
latter is explicit in equation (2) but not in equation (3).
The difference between a0 and a1 is precisely the difference
between the expression 4πRD and 8πRD which describes
the capture and mutual annihilation rates respectively in
the literature on excitons in molecular crystals [31,32].
Although the precise relationship of a0 and a1 would de-
pend on the relative importance of the mice motion and
infection processes, we will take a1 = 2a0 for simplicity in
the rest of the paper in keeping with the extreme limits
considered in other literature contexts [33].

The juveniles transmit infection among themselves
with rate per unit density a1, get infected and transmit in-
fection to the adults with rate per unit density a0, struggle
for resources all over space through the environment pa-
rameter K and become adult with a growth rate g. This
growth rate, introduced to represent a juvenile settling
into an unoccupied home range and growing into an adult,
is proportional to G(x) of equation (2). The other terms
can be interpreted as explained above for equation (2).
The coupled set of equations for normalized quantities in
the mean field description is

dBi

dτ
= −γBi + α0BsAi + α1BiBs − Bi (A + B),

dBs

dτ
= −γBs + β (As + Ai) − α0BsAi − α1BiBs

−Bs (A + B),
dAi

dτ
= −Ai + α0AsBi + γBi −Ai (A + B),

dAs

dτ
= −As − α0AsBi + γBs −As (A + B), (3)

where each script character denotes the ratio of the quan-
tity described by the corresponding Roman character and
cK. Thus, Ai = Ai/(cK). We also write τ = ct and
the dimensionless parameters are now γ = g/c, β = b/c,
α0 = Ka0, and α1 = Ka1. As explained above we take
a1 = 2a0.

From equation (3) it is easy to recognize that the total
juvenile and adult populations, respectively, B = Bi + Bs

and A = Ai + As, obey coupled logistic-type equations
wherein the time derivatives dB/dτ and dA/dτ are given
by βA−γB−B(A+B) and −A+γB−A(A+B), respec-
tively. Even if A and B are both limited by a quadratic
saturation, it is evident that the sum A + B does not
obey the standard logistic equation. This fact gives some
qualitative differences of the steady state parameters de-
pendence of (3) from the AK model (see Appendix).

3.2 Simulation description of the full spatially resolved
system

It is well-known [34] that spatial aspects, not accessible
to mean field theory, are (obviously) very important in
epidemiology, generally in ecology, and that they require
a description, capable of addressing spatial correlations.
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One way to treat spatial resolution is to adopt kinetic
level approaches as in the AK model, while another, a
more detailed way, is to adopt an approach based on the
evolution of the full configuration states. We have elected
to choose the latter in the present paper. Analytic solu-
tions are typically impossible in such an approach except
for oversimplified models. Hence we resort to Monte Carlo
simulations as done previously [11] for the AK model.

Our simulations are carried out on a L×L square lat-
tice with periodic boundary conditions with each site of
the lattice corresponding to a small region in the land-
scape. Moderately large lattices (with a total of 214 sites)
have been used in the simulations. The four subclasses
of mice, (adults and juveniles in susceptible and infected
states) change their numbers, as time evolves, in accor-
dance with rules which represent the model under consid-
eration. At each time step, the juveniles may move but
the adults not. The system is updated synchronously at
each time step. We have studied the system with two
types of diffusive step size: nearest-neighbour and next
nearest-neighbour length. We have noticed that the re-
sults were qualitatively identical but differ only slightly
from the quantitative point of view. We have chosen to
display the results when the probability for the diffusive
(random walk) motion is 0.125 for any of the eight direc-
tions of the square lattice (next nearest-neighbour length).

Each Monte Carlo time step consits of choosing each
of the mice and make it undergo the various processes if
the probability for that specific process is bigger than a
uniformly sampled random number between 0 and 1. Thus
we have that an adult, infected or susceptible, gives birth
to a susceptible juvenile with probability Pb. An adult dies
by aging with probability Pc. If two or more mice meet at
a site, one of them may die with probability 1 − PK . If
a susceptible mouse occupies the same site as an infected
mouse, the former has probability Pa of getting infected
in the next time step. And if a juvenile mouse finds itself
at a site without an adult, it grows up and settles at that
site with probability Pg. These rules represent a simplified
version of equation (2) augmented to the configuration
level. It is simplified in that the regions (‘green pastures’)
where the juveniles may settle down have not been marked
but the process has been represented through a probability
of conversion.

The simulation description thus has the parameters,
Pb, Pc, Pg, Pa, and PK , in correspondence to the re-
spective rates b, c, g, a0, and K of the mean field equa-
tions analyzed above. However, the correspondence is not
straightforward in all cases, as expected. Extensive com-
puter simulations were performed in the following way.
From a given initial condition the system is let to evolve
until a steady state is reached. The steady state values for
the various population densites are recorded. These values
are then averaged over one thousand different initial con-
ditions to obtain the average steady state. This procedure
is then repeated for different parameter values and a bi-
furcation diagram is generated. We have reported results
from random initial locations of susceptible and infected
adults filling up one fifth of the lattice. We have also ex-

plored how the type of initial conditions would affect the
bifurcation diagram and we have noticed that only for
very low densities results may change since fluctuations
can drive the system to extinction.

In general we found that the system always reaches
a steady state, after a transient. The main quantities we
analyzed were the densities of the four populations of mice
and the existence or not of infection in the steady-state.
Densities are defined as the total number of mice in the
lattice divided by the total volume (or area) of the lattice.
Since the existence of more than one adult per site is not
allowed, the density of adults lies between 0 and 1. By
contrast, the juvenile density may exceed 1.

The main difference between the mean field and the
simulation results lies in the effects of the quantities that
govern the growth of juveniles into adults, rate g and prob-
ability Pg, respectively. We show this dependence respec-
tively in Figures 1 and 2. From Figure 1a we see a non-
monotonic dependence of the steady state infected popu-
lation densities as γ increases. This non-monotonicity is
also evident in Figure 1b where the time evolution for
the entire infected population is shown for different values
of γ. In the limit γ → 0 in equation (4) A,B → 0 since no
new adult can be ‘born’ (i.e., produced by conversion of a
juvenile through growth), the juvenile population cannnot
be regenerated and dies out because of competition, and
eventually no population can be sustained. The juveniles
are responsible for spreading the infection to the adults
and a larger number of them tends to increase the in-
fected population. However if the juveniles convert into
adults too fast, there are less mobile carriers of infection,
the number of infected juveniles decreases (note that ju-
veniles are born susceptible and never infected, this being
a Hantavirus characteristic), and eventually the infection
disappears. In other words we can say that as γ grows,
the critical environment parameter Kc eventually becomes
smaller than the system K.

In Figure 2a we show the Pg dependence of the steady
state populations in the simulation description. This is
a noteworthy difference from Figure 1a: a monotonic in-
crease of the infected population. This difference has to be
ascribed to a spatial correlation effect. Since there can be
only one adult per site, an increase in Pg has also the effect
of reducing the number of available sites for the juveniles.
For sufficiently large values of Pg, clusters of adults start to
form, creating confined regions in the landscape where the
juveniles are constrained to roam. This in turn increases
dramatically the average time necessary for a juvenile to
find an available site to settle down. Unfavorable effects of
the growth of juveniles into adults observed in the mean
field theory do not therefore occur in the simulations as
a result of the spatial correlations set up by the cluster
formation in the adults. The monotonic increase of the in-
fected population as function of Pg can also be observed
in Figure 2b where the time evolution for different Pg val-
ues is depicted. In order to verify the validity of the above
explanation of the difference in the mean field and sim-
ulation predictions, we studied a pseudo-model, interme-
diate between the two descriptions. In the pseudo-model,
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Fig. 1. Effect of variation in the growth rate on mice densities as given by the mean field description. Steady state mice densities
are plotted in (a) against the normalized growth rate γ (=g/c) at which juveniles grow into adults, and the evolution of the
total density of infected mice, normalized to its initial value, is plotted in (b) against the normalized time ct. Both exhibit
non-monotonic behavior, for instance, a rise in infection as γ is increased from zero and a decay beyond a certain value. System
parameters have been chosen to be α0 = 1.1 and β = 15. In (a), the four mice densities have been shown in the main figure and
the total infected and susceptible densities, sums of adult and juvenile contributions, are shown in the inset with axes identical
to the main figure. In (b), the ten curves are for γ incremented by 1 from 0 to 9 and go down the graph in order for short times
but for long times approach equilibrium values that are not in the same order. Notice also the peculiar non-monotonicity in
time.
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Fig. 2. Effect of variation in the growth probability as given by the simulation description. Compare with Figure 1. Steady
state mice densities are plotted in (a) against Pg and the time evolution is shown in (b) where the ten curves correspond to
increments of 0.1 in Pg. Contrary to the mean-field model (see Fig. 1), where infected population as function of the growth rate
γ always displays a non-monotonic behavior, here the infected population has a monotonic increase with Pg . The parameters
for both (a) and (b) are Pc = 0.01, Pb = 0.011, Pa = 0.3 and PK = 0.99.

a juvenile can move to an arbitrary position and not only
to a nearest-neighbor site, thus being able to jump the bar-
riers set up by the clusters formed in the adult population.
Careful simulations we have carried out show that, indeed,
the steady state populations have an infected phase that
decays to zero beyond a critical value of Pg: the pseudo-
model predicts the same qualitative behavior as the mean
field theory.

The struggle for resources described at the mean field
level by the environment parameter K is here represented
by the probability of survival PK : the probability of dying
via competition for resources is 1 − PK . In Figure 3a we
show the steady state populations as function of K in the
mean field description and in Figure 3b the correspond-
ing results as function of PK) in the simulation descrip-
tion. The behaviour in the two cases is similar: beyond the
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Fig. 3. Steady state densities versus the environment parameter plotted from the mean field description in (a) and the simulation
description in (b). The x-axis coordinate in the inset and the main figure is K in (a) and PK in (b). Other parameters are taken
to be β = 1.5, γ = 1 and a0 = 1 in arbitrary units in (a) and Pc = 0.01, Pb = 0.014, Pg = 0.1 and Pa = 0.3 in (b). The behavior
is similar in both levels of description. When the environment parameter is large enough, an infected phase emerges. Once that
happens, the increase of the population is due only to a larger density of infected animals, the susceptible population decreasing
its overall density to a constant. The susceptible population in the simulation description becomes zero for PK smaller than a
critical value that depends primarily on the value of Pb relative to Pc. If Pb is sufficiently close to Pc, as is the case shown here,
competition and adult death processes drive the entire system to extinction at a nonzero value of PK .

critical value of K (PK) the infected population increases
with a sublinear dependence on K (PK).

4 Concluding remarks

From a perspective of concepts that have been successful
in physics, our present model of the mice assembly may be
described by the term liquid-solid because it describes a
class of mice that move freely as do the molecules of a liq-
uid, and another class of mice that move in the neighbor-
hood of fixed positions (the burrows) as do the molecules
of a solid, which vibrate around fixed lattice sites. There-
fore, for the purposes of the following discussion, we will
call our model the liquid-solid (LS) model.

Although the LS model was constructed by general-
izing the structure of the AK model, the two have really
only one parameter truly in common: the environment pa-
rameter K. The birth rate b in the AK model describes the
emergence of new mice from all mice whereas it produces
only juveniles from adults in the LS model. The death
rate c in the AK model is similarly applicable to all mice
but in the present version of the LS model it applies only
to the adults. In addition to depletion via competition for
resources, the disappearance of the juveniles is assumed to
occur only through the growth rate g when they grow up
into adults. The diffusion constant D describes the motion
of all mice in the AK model but only of the juveniles in
the LS model, the adults being stationary. Therefore, we
make comparison comments regarding the two models by
looking at how the infection depends on K. For simplicity
we discuss this comparison at the mean field level.

At first sight, it might appear that the LS model does
not reduce to the AK counterpart in any situation. How-

ever there exists one such limit. Let K be infinite so that
the carrying capacity is infinite also. To eliminate runaway
solutions in the steady state, let us take the birth and
death rates equal in the AK model so that bAK = cAK ,
and let us correspondingly take the birth-death ratio β = 1
in the LS model. Consider now the limit in which the
growth rate g of the juveniles and the death rate c of
the adults in the LS model are much larger than the rate
of infection between adults and juveniles but such that
γ = g/c is finite. In such a situation the adults consti-
tute an isolated reservoir of the infection: they do not
play any role in spreading it since an adult is infected
only if it ‘grew up’ from an infected juvenile. In particu-
lar, it can be shown that by considering a1 = aAK and
γ =

[
(1 + 4cAK)1/2 + 1

]
/2, where aAK is the infection

parameter in the AK model, our present model at steady
state gives exactly the same analytic dependence of the
AK model for the infected and susceptible population as
function of cAK and aAK . This equivalence suggests a sim-
ple way to compare the two models, when K is finite, by
considering that no transmission of infection occurs be-
tween adults and juveniles, i.e., a0 is taken to be zero in
the LS model. In such a scenario, the two models have
the same qualitative dependence of the infected and sus-
ceptible populations as function of the environment pa-
rameter: for K > Kc the susceptible population remains
constant while the infected population increases linearly.
In other words, by increasing K , the additional popula-
tion (proportional to K) that the environment can sustain
eventually becomes infected at steady state.

We indicate how our theoretical predictions may be
used in conjunction with observations in the field to test
the validity/applicability of the LS model. The qualitative
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differences between the AK and LS models discussed
above could be exploited in analyzing data from mark-
recapture observations. In such observations, traps are set
up in regions in the landscape and mice are caught, exam-
ined, marked, and released. Information about a variety of
features is gathered including infection status and age. Ju-
veniles have clear physionomical characteristics that dis-
tinguish them from the adults [21]. If all other effects are
controlled, supplementing additional food homogeneously
over the terrain would be a way to increase the environ-
ment parameter K. Experiments that exploit this feature
may allow one to determine if, in the presence of infection,
the susceptible population remains constant or decreases
as the amount of food is increased. This would allow us to
establish whether the juveniles are indeed the main carrier
of the disease and whether augmenting the AK consider-
ations to the LS model is the correct way of analyzing the
spread of the Hantavirus infection.

Since in both models the value of Kc depends on all
the other parameters, there are obviously situations in
which one model predicts infection while the other does
not. However, if we compare the amount of infection as
K increases beyond Kc, our analysis shows that the AK
model gives more infection than the LS model. Surely,
this is to be expected since, in the latter, part of the pop-
ulation (adults) is stationary and transmit infection less
efficiently. This is an important consequence of the ex-
istence of home ranges determined quantitatively in our
recent work [17–19]. Our analysis allows us to quantify
that consequence, i.e. to determine how much the reduced
motion of the adults decreases the transmission of infec-
tion compared to the AK model. While, for simplicity,
we have considered here the extreme limit of zero overlap
between neighboring home ranges, to what extent the de-
gree of home range overlap will change our conclusions is
an open problem and the subject of our current investiga-
tions. Our preliminary studies show that the actual effect
is a superposition of the consequences of the AK model
in which the range overlap is infinite with those of the LS
model in which the overlap is zero.

To keep our analysis focussed on essentials, we have
considered in the present paper the case in which the ju-
venile population is depleted only through growth into
adults and not through death. We have carried out mean
field as well as spatially resolved studies of the situation
when this simplification does not apply. This is important
because, in their itinerant attempts to find suitable places
for their own home ranges, juveniles are surely exposed to
predators that kill them. Details of the investigation will
be given elsewhere [28] but we report here that we have
uncovered the epidemiologically noteworthy possibility of
buffering the transmission of the infection by introduc-
ing predators in the landscape. Sustained by a sufficiently
large K (environment resources), a large susceptible pop-
ulation of mice can exist but with no infection as a conse-
quence of interaction with predators.

Among additional avenues of theoretical research
based on the LS model are the study of spatial correla-
tions based on modern techniques [35], the extension of

our analysis by specifying the spatial dependence of rates
G(x) in equation (2) so that the effects of the location
of the ‘green pastures’ can be ascertained, and the com-
parison of our predictions to observations in the field con-
cerning infection spread. The latter effort is particularly
important because it will allow us to explore the applica-
bility and practical relevance of home range inclusion in
the theory of the spread of the Hantavirus. Research in all
these directions is under way.
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Appendix

As shown in Section 3.1 the total juvenile and adult pop-
ulations, respectively, B and A, obey two coupled logistic-
type equations. Their steady state values B and A can be
determined exactly and are given for β > 1 by

B =
1 + ξ −√

1 + 2ξ

ξ

[

1 +
(γ + 1)

2

(√
1 + 2ξ − 1

)]

,

A = γ
1 + ξ −√

1 + 2ξ

ξ
, (4)

with ξ = 2(β−1)γ/(1+γ)2. The situation β > 1 represents
the juvenile birth rate b being larger than the adult death
rate c. For the opposite situation, β < 1, when the adults
die quicker than the juveniles are born, the trivial solution
A = B = 0 emerges. These two steady states exchange
their stability as β crosses the value 1 clearly indicating
the presence of a transcritical bifurcation at β = 1 from
zero to non zero population density.

Since the total adult and juvenile population in (4) is
known in terms of the parameters ξ and γ, the set of equa-
tions (3) at steady state can be simplified considerably to

α0BsAi + α1BsBi − Bi

(
γ + A + B) = 0,

Bi + Bs = B,

(γ + α0As)Bi −Ai

(
1 + A + B) = 0,

Ai + As = A. (5)

The system (5) has only three possible solutions with
the four variables larger or equal to zero. The trivial one
(Ai = As = Bi = Bs = 0) when β < 1, and two non-zero
steady states for β > 1. These two steady states can be
obtained by reducing equation (5) through substitution to
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the following polynomial equation in Bi

Bi

{
α0α1B2

i + Bi

{A (α2
0 + α0 + α1

)
+ B [α0

+α1 (1 − α0)] + 2γα0 + α1} +
[
γ + A + B (1 − α1)

]

× (1 + A + B)− α0B
(
γ + α0A

)}
= 0. (6)

The two non-zero solutions represent respectively the non-
infected and infected phase. As explained in Section 3.1,
we consider α1 = 2α0.

The non-infected phase is given by

Bi = 0,

Bs = B,

Ai = 0,

As = A, (7)

while the infected phase is given by

Bi =
√F2 + 8E − F

4α0
,

Bs = B − Bi,

Ai =
Bi

(
γ + α0A

)

α0Bi + 1 + A + B ,

As = A−Ai, (8)

wherein F = 2(γ + 1) +A (3 + α0) +B (3 − 2α0) and E =
α0B
(
γ + α0A

)− [γ + A + B (1 − 2α0)
] (

1 + A + B). The
study of the sign of equation (6) shows that one root is
always negative while the other one gives the critical α0

for the infection to exist:

αc =
γ + 2

(
1 + A + B)

2A

×
⎧
⎨

⎩

√
√
√
√1 +

4A (γ + A + B) (1 + A + B)

B [γ + 2
(
1 + A + B)]2

− 1

⎫
⎬

⎭
.(9)

Equivalently by studying the non-normalized mean field
equations, we can calculate the critical environment pa-
rameter Kc:

Kc =
γ + 2

(
1 + A + B)

2a0A

×
⎧
⎨

⎩

√√
√
√1+

4A (γ + A + B) (1 + A + B)

B [γ + 2
(
1 + A + B)]2

−1

⎫
⎬

⎭
.(10)

Here A + B is the total population at steady state, i.e.,
the carrying capacity of the system normalized to cK:

A + B = (β − 1)
γ

1 + γ

√
1 + 2ξ − 1

ξ
. (11)

An infected phase exists for K > Kc, equivalently, for
α > αc.

The stability analysis of the three solutions of (3) is
done by calculating the Jacobian of the system at steady
state J

(Ai,As,Bi,Bs

)

J =

⎛

⎜
⎜
⎝

− (1 + A + B + Ai

)
α0Bi −Ai

−As − (1 + A + B + As + α0Bi

)

α0Bs − Bi −Bi

β − (α0 + 1)Bs β − Bs

α0As −Ai

− (α0 + 1)As

2α0Bs −
(
γ + A + B + Bi

)

−(2α0 + 1)Bs

−Ai

γ −As

α0Ai + (2α0 − 1)Bi

− [γ + A + B + Bs + α0

(Ai + 2Bi

)]

⎞

⎟
⎟
⎠. (12)

The trivial solution has the following four eigenvalues

λ1 = −1,

λ2 = −γ,

λ3 = −γ + 1
2

(√
1 + 2ξ + 1

)
,

λ4 =
γ + 1

2

(√
1 + 2ξ − 1

)
, (13)

from which it is evident that λ4 < 0 if β < 1, while all the
other eigenvalues are always negative. The trivial solution
is thus stable if β < 1 and it becomes unstable when β > 1.

The polynomial characteristic P (λ) of the Jaco-
bian (12) associated with the solution (7) is equal to the
product P1(λ)P2(λ) where

P1(λ) = λ2 + λ
[
1 + 3

(A + B)+ γ
]

+
(
1+2A+B) (A + 2B + γ

)− (B − β
) (A− γ

)
,(14)

and

P2(λ) = λ2 + λ
[
1 + 2

(A + B)− 2α0B + γ
]

+
(
1 + A + B) (A + B − 2α0 B + γ

)− α2
0AB. (15)

The eigenvalues associated to P1(λ) are given by

λ1± =
1 + γ

4

[

1 − 3
√

1 + 2ξ ±
√

2
(
1 + ξ +

√
1 + 2ξ

)
]

,

(16)
with λ1− < 0 for any β and γ and λ1+ > 0 when β < 1.
The eigenvalues associated to P2(λ) are negative for α0 <
αc and they become positive when α0 > αc. The solution
defined in equation (7) is thus unstable if either β < 1 or
if α0 > αc.

The study of the sign of the eigenvalues associated with
the third possible steady state is done numerically and it
is possible to show that equation (8) represents a stable
steady state if β > 1 and α0 > αc and become unstable
if either β < 1 or α0 < αc. The mean field description
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from the dynamical point of view has thus two transcrit-
ical bifurcations: one when the growth rate b equals the
death rate c and the other one when the infection rate α0

equals the critical infection rate αc or similarly when the
environment parameter K equals the critical environment
parameter Kc.
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